
1

Adaptive Random Forest for Detecting Fraudulent Credit Card Transactions

Abstract - This is a project implementing a real-time fraud-detection system (FDS) for Credit Card Fraud

Transactions using Adaptive Random Forest in Apache Spark platform. The increasing use of credit card

in online transactions reflects the rise of a new, fast and easy way of interchange in modern world. Based

on extensive data collected for online card payments in the United Kingdom, is expected that by 2026, the

number of card payments per day will grow to 60 million.[1] This new form of transaction involves the risk

of fraudulent attacks and fishing attempts, therefore provokes the urgent need of developing fast and online

FDS. This project suggests a new system for detecting and monitoring online transactions using the latest

Apache Spark processing engine, Structured Streaming, and implementing an Adaptive Ensemble

Classification Method, Random Forest. Our goal is to design a learner, for extremely large datasets which

do not fit in main memory, adapting to concept drift and evolving data. We show the effectiveness of our

method on both synthetic and real world datasets and we manage to reach a 92% accuracy on average.

Keywords Random Forest ∙ Concept drift ∙ Apache Spark ∙ Weighted Voting ∙

1. Introduction

1.1 Machine Learning in the Big Data World

From early 2000, machine learning and statistics are becoming common practice for solving classification

problems. Recently many statistical methods have been adapted to Big Data such that subsampling and

divide and conquer approaches have become common practice.[2] Thus, the notion of mining a fixed-sized

database is giving way to the notion of mining an open-ended data stream as it arrives.[3] This fact depicts

the existing problem statement for large and massive data. The logical assumption with which we construct

machine learning models nowadays, is that the data can be too large to fit to computer memory and therefore

the state of our model relies on a fraction of data. Some applications considering unbound data, are synopses

of data streams and effective prediction models, which are an open research area. For that reason, many big

streaming platforms concentrated their work to develop real time machine learning processing tools. A

robust tool is “MLib” from Apache Spark, which is a part of the Hadoop Ecosystem within the Big Data

analytic framework, including a range of Machine Learning algorithms such Naïve Bayes, KNN, K-means

and Random Forest Decision Trees to name but a few. Despite the widely acceptance of MLib libraries,

there is need for more custom algorithms with specific features.

1.2 Random Forest

Random Forests (RF) were introduced by Breiman [4] in the need of an effective tool for prediction.1

Random Forests consists of a collection of weak learners such that each one produces a predicted class.

Firstly, RF is responsible to collect all the individual predictions and apply majority voting, and secondly

produce the final prediction. One of the many worth mentioned points in his paper is the claim: “Injecting

the right kind of randomness, makes RF more accurate”.2 This randomness is introduced by two different

forms. The first one lies around the idea of drawing random samples with replacement from the training set

(bagging) and the second one lies around the idea of randomly selecting a subset of features for each

decision tree at the process of node splitting. Breiman, also, addresses three very important key variables:

overfitting, variance and bias. In Section 2 of his paper proves that due to the Strong Law of Large Numbers

1 Breiman’s first approach simulates a prediction model in a non-streaming setting.
2 A step forward of this idea is the implementation of Extremely randomized trees [5]

2

RF always converge so that overfitting is not a problem. He shows, in the experiment section, that adaptive

bagging and bootstrap algorithms reduce bias as well variance. A notion of reduced bias can be explained

by the fact that RF relies on the power of the "crowd"-learners. Finally, by applying bootstrap sampling,

we end up that approximately 64% of data points are used by each weak learner and the other 36% is the

out of the bootstrap sample or out-of-bag (OOB). As we will discuss in Section 4, in streaming context,

bagging is performed by an alternative manner achieving equal results to Breiman’s bagging and OOB can

be reduced significantly. In 2001, a state-of-the-art algorithm of Hoeffding Tree was introduced by

Domingos and Hulter for mining high-speed data streams [3] responding to challenges set by the production

rate of data and the aforementioned incapability of computer resources to contain massive data.

1.3 Concept Drift

Our project was inspired by an updated version of [3] for time-changing data streams.[6] It is also inspired

by the paper «Adaptive random forests (ARF) for evolving data stream classification» of Heitor Gomes.[7]

The last two papers use the basic Hoeffding concept for training the classification model but differ on the

way they adapt to concept drift. Heitor Gomes claims that they avoid bounding ARF to a specific drift

detecting algorithm to facilitate future adaptations and they propose a new abstract warning and drift

concept for triggering the concept-drift algorithm of theirs training model. Both papers, so do we, avoid

deleting already trained trees once a drift is detected but create background trees ready to replace the

existing ones.

This paper is organized as follows. After this introduction, we briefly state some minimum information for

the Apache Spark Streaming Platform and the implemented dataset as well as the preprocessing carried-out

of data fed to the Streaming Job, Section 2. In Section 3, we present the Project Pipeline starting from some

necessary theoretical insights setting some basic concepts of understanding.

2. Methods – Materials – Formulation

2.1 Apache Spark Streaming

Structured Streaming is a scalable and fault-tolerant stream processing engine built on the Spark SQL

engine.[8] In short, Structured Streaming provides fast, scalable, fault-tolerant, end-to-end exactly-once

stream processing without the user having to reason about streaming. Apache Spark, promises that the

queries are processed using micro-batching with latency from 100 milliseconds to 1 millisecond (when

tuning some parameters). Essentially, Structured Streaming is a new, higher-level API for streaming

structured data. Structured Streaming unlike Apache Streaming uses DataFrames which are, in practice, a

Dataset of Row objects. The key point that differs Structured Streaming from Apache Streaming is that the

case of Structured Streaming, Spark knows at compile time what type of information it will receive, and

has not have to wait until run time to actual figure out the structure of data.

2.2 Data Set

The material of this project comes from the Kaggle [9], an online community of data scientists that allows

users to find and publish data sets. As we have mentioned before credit card fraud detection is a motivation

subject for machine learning and data streams.[10][11] The dataset, [12] consists of 284.807 online transactions

where only 0.172% of all transactions is classified as fraud (positive class) which means that dataset is

highly unbalanced.

3

In the Section 4, we will present some ways for solving such a problem by introducing oversampling (by

replicating the minority class).

The data contains only numerical input variables which are the result of a PCA transformation. The data

consists from 28 features V1, V2, … V28 and three extra columns: 'Time', 'Amount', 'Class'. Feature 'Time'

contains the seconds elapsed between each transaction and the first transaction in the dataset. The feature

'Amount' is the transaction Amount, this feature can be used for example-dependent cost-sensitive learning.

Feature 'Class' is the response variable and it takes value 1 in case of fraud and 0 otherwise.

2.3 Data Preprocessing – Data Source

A complete FDS must consist of three phases, the training, testing and predicting phase. Α small

simplification, that we have to make, is that we consider immediate classified tuples in our model and not

delayed tuples (samples with delayed labels). The reason for that is because often the tuples used for the

training of the model belong to some past records where they have already been distinguished by the

investigating team of each bank and there is one to one relation between features and the known class. This

assumption helps us to build a precise model from past records, able to predict incoming-present records.

Furthermore, a worth mentioning point is that the dataset, and the credit card fraud detection in particular,

is the reason for this project and not the purpose. We do not want to create a model defiantly for the needs

of solving this particular problem but we want to build a model which can be applied to a variety of such

similar problems. So, some small assumptions are acceptable up to the point that we do not cut corners

from building a general model. Similar behavior to training samples, have the testing samples. Testing, in

general, serves the purpose of monitoring the system. Often, these testing samples come from a tiny fraction

of daily transactions amount and they might have the same number of samples from the two classes. The

fact that we know that true label of the tuple and we compare it with the predicted label from our model,

helps us to have a better understanding about the performance of our model. In Section 5, we present all

the metrics we used in order to monitor our model. Last but not least, we have the predicting samples, where

we don’t know the true label but based on our model, we predict its label. In this case, we can have a real

time answer whether or not this sample is fraudulent or not. Each one of the aforementioned phases is

produced by a separate source, therefore we have three sources. This concept will be presented in detail in

Section 4.1.

In order to distinguish from which source each tuple is coming from, we have added an extra column for

identification. As mentioned before, the original tuple contains the values of each attribute and the

corresponding class, (in case of training and testing) where as in case of predicting, each tuple contains only

the set of values. So, an example of an instance looks like that: {v1, v2, v3, …, c, id, incnr}, where c= Class,

id is either -5 in case of testing or 5 in case of training and incnr is the incremental number of the tuples

since the first produced tuple. In case of a predicting tuple id is equal to -10.

4

3. Machine Learning Model - Hoeffding tree

3.1 Hoeffding Tree Concept

Domingos and Hulten propose a new system for infinite set of data without the need to store any of the

incoming instances. Their classification problem is described as follows: N examples in the form of (x, y),

where x is the set of numeric attributes and y is the discrete class, are fed to a model. The goal is, from those

examples, to produce a model y=f(x) that will predict the correct y of new incoming examples x with high

accuracy. In our approach each Hoeffding Tree is a binary tree which consists of a set of nodes where each

node split the data into two subsets. The reason for that is thoroughly explained in Section 3.5. There are

two types of nodes, the intermediate nodes and the leaves. The first ones, are guiding each incoming tuple

to the next level and the leaves are predicting the class based on the most dominant class within the node.

Each node, despite what type it is, has a set of parameters that are necessary for constructing a tree. Those

parameters are the followings:

− The splitting attribute and the splitting value. Based on these two values each incoming tuple is

guided to the next level, during the traverse from the root to the leaves.

− The label counts, therefore the label of the node.

− The number of tuples it has seen, as well as the maximum number of tuples it has to see in order to

start the splitting process. In Section 3.3, there are mentioned all the criteria for node splitting.

− Information Gain which corresponds to the best attributes’ performance for its best value.

− A set of attributes, that are randomly selected.

− Its child nodes, left and right node and its parent node.

3.1.1 Building a Hoeffding Tree

Algorithm: Create Hoeffding Tree

Input: Max: is the number of how many features we have to select from

 m_features: is the number of the size of the random subset of Max

 max_examples_seen: is the number of examples between checks for split

 delta: one minus the desired probability of choosing the correct feature at any

 given node

 tie_threshold: is the number between splitting values of selected feature for split

Output: root of Hoeffding Tree

1. For each attribute on m_features do:

2. Create a HashMap for samples

3. Create a HashMap for label counts and Initialize them with zero

4. instances_seen ← 0

5. correctly classified ← 0

6. weight ←1

7. InitializeRoot (m_features, max_examples_seen, delta, tie_threshold)

8. Reservoir Sampling (m_features, Max)

Pseudo Code Analysis

Line 2: We know a priori the number of attributes that we have, so we create as many lists as the number

 of attributes.

5

Line 3: We know that we have a binary problem (0: Non Fraud, 1: Fraud) so we need only 2 <0, ?> and

 <1, ?> in order to keep track the label counts.

Line 6: At first all Hoeffding Trees have the same weight.

Line 7: InitializeRoot is a function for initialize variables such as: information gain, root label, splitting

 attribute and value, left and right child and parent node and sets m_features, max_examples_seen,

 delta, tie_threshold to the user’s input.

Line 8: In order to select m random features from total features we use Reservoir Sampling.

3.1.2 Train a Hoeffding Tree

Their solution describes a model which has to process a fraction of incoming tuples in order to find the best

attribute at an internal node of the tree. In order to know the sufficient number of tuples with which we can

conclude to the best splitting attribute, we need to set the statistical Hoeffding Bound. Hoeffding Bound

guarantees that given n observations of a random variable r whose range is R (in our case log2) the

computed meanr of this variable differs at most by ε with probability 1-delta from the true mean r.

The ε is defined as such:

𝜀 =
√𝑅2 ln (

1
𝑑𝑒𝑙𝑡𝑎

)

2𝑛

Algorithm: Train Hoeffding Tree

Input: node: is the root of the Hoeffding Tree

 input_sample: is an array of values of the corresponding attribute

Output: root of Hoeffding Tree

1. filtered_input ←Filter the input_sample respectively to m_features.

2. TargetNode ← Traverse (node, filtered_input)

3. If NeedForSplit (TargetNode) then

4. AttemptSplit (TargetNode);

5. InsertNewSample (TargetNode, filtered_input);

6. else

7. InsertNewSample (TargetNode, filtered_input);

8. end

Pseudo Code Analysis

Line 1: We have to only select the features that the HT was built based on the Algorithm of Creating HT.

Line 2: We traverse the input sample through the HT and we find the node where it should be added.

Line 3: NeedForSplit is a function that checks where or not we should split the current node. The criteria

 are two:

− If the number of examples seen is greater or equal to the maximum number of examples it should

see for considering a split

− If the node is homogeneous which means if the node is pure and all samples are of the same class.

Line 4: For a given node, it attempts to split the node. Firstly, finds the best attributes to split the node and

 secondly, finds if the best attributes satisfy the condition (based on epsilon and tie_threshold). If

 these two conditions are satisfied it performs the splitting procedure.

Line 5: Add the input sample to the target node. This process includes:

 − Adding each value of each attribute to the correspond HashMap.

6

 − Add the label of the input sample to the correspond HashMap.

 − Update the node’s label counter.

 − Update the counter of samples seen.

Line7: If there is no need for split, we just add the input sample to the target node.

3.1.3 Test and Predict using Hoeffding Tree

A Hoeffding Tree has to keep track with its progress and have to broadcast its information to the State. In

order to do that it needs to contain the number of correctly classified tuples, the weight and the number of

seen instances. For defining at each Hoeffding Tree (ℎ) the weight (𝑤ℎ) we have to take the ratio between

the correctly classified tuples (𝑐ℎ) and the total tuples seen (𝑛ℎ), 𝑤ℎ =
𝑐ℎ

𝑛ℎ
, 𝑤ℎ𝑒𝑟𝑒 𝑐ℎ < 𝑛ℎ

Algorithm: Test and Predict Hoeffding Tree

Input: node: is the root of the Hoeffding Tree

 input_sample: is an array of values of the corresponding attribute

 purpose_id: is the id for identifying the different tuples

Output: predicted_value: is the prediction from the Hoeffding Tree

1. filtered_input ←Filter the input attributes respectively to m_features

2. If purpose_id is a testing OR prediction sample then

3. predicted_value ← TestHT (node, filtered_input)

4. else if purpose_id is a training sample then

5. increase by one the instances seen counter

6. predicted_value ← TestHT (node, filtered_input)

7. If predicted_value is equal to the true label of the training sample then

8. increase by one the correctly classified counter

9. end

10. UpdateWeight (correctly_classified, instances_seen)

11. end

12. return predicted_value

Pseudo Code Analysis

purpose_id: As we have discussed previously, we need to use an id variable for distinction between

 predicted, testing and training tuples.

 − purpose_id= -5 correspond to testing examples

 − purpose_id = -10 correspond to predicted examples

 − purpose_id= 5 correspond to training examples

Line 3: TestHT is a function which traverses through the HT and returns the label of the target node.

Line 10: UpdateWeight follows the concept we described previously.

7

3.2 Random Forest Concept

Let us assume that given is a set of training data 𝑿𝒕 = {(𝒙𝒎, 𝒚𝒎), 𝒎 = 𝟏, … 𝑴} where 𝒙𝒎 is an input

observation and 𝒚𝒎 is a predictor output. A weak learner can be created using the training set 𝑿𝒕. A weak

learner is a predictor 𝑓(𝒙, 𝑋𝑡) having a low bias and a high variance [13]. By randomly sampling from the

set 𝑿𝒕, a collection of weak learners 𝑓(𝒙, 𝑋𝑡 , 𝜽𝒌) can be created, with 𝑓(𝒙, 𝑋𝑡 , 𝜽𝒌) being the kth weak

learner and 𝜽𝒌 is the random vectors electing data points for the kth weak learner.

3.1.3 Randomly Selection of k-features

Ensemble methods work best when the predictors are as independent from one another as possible. One

way to get diverse classifiers is to train them using very different algorithms. This increases the chance that

they will make very different types of errors, improving the ensemble’s accuracy. Second way to get diverse

classifiers is to use the same training algorithm for every predictor and train them on different random

subsets of the training set ,thus we managed this using leveraging sampling which explained below. Another

way to get in even more predictor diversity is to use randomly selection a subset of the input features. The

benefits of using randomly selection a subset of the input features is: (1) useful when dealing with high-

dimensional inputs, (2) introduces extra randomness when growing trees so the Random forest results in

greater tree diversity, which trades a higher bias for a lower variance, generally yielding an overall better

model, (3) reduce the computational cost of finding the best-split feature at each node on every tree of

Random Forest.

3.1.2 Leveraging Sampling

In data stream learning it is infeasible to perform multiple passes over input data as you cannot keep the

entire stream. Thus, an adaptation of Random Forest to streaming data depends on an appropriate online

bootstrap aggregating process. To explain our adaptation to address this requirement we need to discuss

how bagging works in non-streaming, and how it is simulated in a streaming setting. In non-streaming

8

bagging [13], each of the n base models is trained in a bootstrap sample of size Z created by drawing random

samples with replacement from the training set. Each bootstrapped sample contains an original training

instance K times, where P(K = k) follows a binomial distribution. For large values of Z this binomial

distribution adheres to a Poisson (λ = 1) distribution. Based on that, authors in Oza (2005) [14] proposed the

online bagging algorithm, which approximates the original random sampling with replacement by

weighting instances3 according to a Poisson(λ = 1) distribution. We use Poisson (λ = 6), as in leveraging

bagging (Bifet et al. 2010) [15], instead of Poisson (λ = 1). This “leverages” resampling, and has the practical

effect of increasing the probability of assigning higher weights to instances while training the base models,

thus we managed to increase the diversity of the weights and modify the input space of the classifiers inside

the Random Forest. However, the optimal value of λ may be different for each dataset.

3.1.4 Out-Of-Bag Error

With bagging, some instances may be sampled several times for any given predictor, while others may not

be sampled at all. When used a Poisson(λ = 1) distribution, this means that only about 63% of the training

instances are sampled on average for each predictor. The remaining 37% of the training instances that are

not sampled are called out-of-bag (oob) instances. Note that they are not the same 37% for all predictors.

Thus, we decided to use leveraging sampling succeeding to reduce the training instances that are not

sampled and to increase the diversity of the weights to instances as explained before.

3.3 Splitting Evaluation Function - Information Gain

The Split Evaluation Function used is Entropy and Information Gain, since the success criterion of a split

is decreasing the impurity for a set of training examples that arrive to a certain leaf. In the case of entropy,

we care about choosing the attribute that minimizes its value whereas for Information Gain the best attribute

is the one with the higher value. Entropy is used to calculate the homogeneity of a node. If the node is

entirely homogenous the entropy would be 0. If the sample is equal to 1 that means that there are equal

parts of tuples inside the node. Furthermore, Information Gain can be defined as the information acquired

about a particular feature when we observe the rest features without it. Below, we provide the definition for

entropy and Information Gain.

Entropy H for a given leaf l with variable 𝐶 = {𝑐1, 𝑐2} where both elements correspond to the two classes

of our binary problem. 𝐻(𝐶) has to be equal or greater than 0. (𝐻(𝐶) > 0) and describes the probability

over the two discrete distributions. 𝑝 = {𝑃(𝐶 = 𝑐1), 𝑃(𝐶 = 𝑐2) }.

𝐻(𝑙) = − ∑ 𝑝𝑖 log2 𝑝𝑖 = −𝑝1 log2 𝑝1 − 𝑝2 log2 𝑝2

|𝑝|

𝑖=1

On the other hand, we provide the definition of Information gain at a leaf s for a certain attribute 𝑋𝛼.

𝐺(𝑙, 𝑋𝑎) = 𝐻(𝑙) − ∑
|𝑙𝑣|

|𝑙|
𝐻(𝑙𝑣)

|𝑝|

𝑖=1

3 In this context, weighting an instance with a value w for a given base model is analogous to training the base model w times

with that instance

9

3.4 Continuous Features

Unlike the Domingos paper,[3] we deal with continuous attributes without knowing the arithmetic

boundaries and distribution of each feature. This fact indicates that we only have the following case: 𝐴 <

𝜃 & 𝛢 > 𝜃, where A is the value of a given feature and the θ the existing splitting point. That results that

the constructed tree has transformed from a tree with multiple children to a binary tree. Finding the optimal

splitting point for a given feature is performed by firstly finding the quartiles of the given feature’s value

space and then testing the three returned values as for which one maximizes the Information Gain.

3. 5. Classification Performance Metrics

3.5.1 Confusion Matrix Voting

Several indices were employed to monitor our classification method. Apart from the accuracy score, which

is calculated as the ratio of correctly classified samples by the total number of samples, showing the overall

accuracy of the method, other metrics of classification performance were also used for the evaluation of the

algorithm. In order to calculate these metrics, the number of True Positive (TP), False Positive (FP), False

Negative (FN) and True Negative (TN) samples were computed.

 − Recall (or Sensitivity-true positive rate) of a tuple is its ability to determine the fraud cases

 correctly. This is also obvious through its calculation: 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁

 − Also, the misclassification of a transaction as non-fraud is quite serious and is desirable to be as

 low as possible. This is estimated through the false negative rate or 1 – TPR.

 − Specificity is the True Negative rate, 𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 and is the ability of a test to determine the

 non-fraud cases correctly.

 −The exact opposite of Specificity, misclassifying a non-fraud transaction as fraud is not as severe,

 and it is measured by the inverse of Specificity (1-TNR).

10

 −Precision (positive predictive value) is calculated as: 𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 . Precision can be interpreted

 as the ability of the classifier not to label as positive a sample that is negative.

 − F1 score is defined as the combination of Sensitivity and Precision as it is calculated using these

 two metrics: 𝐹1 =
𝑃𝑃𝑉𝑇𝑃𝑅

𝑃𝑃𝑉+𝑇𝑃𝑅
=

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 .

4. Project Pipelining

4.1.1 General Architecture

In this section we will walk you through in the typical lifespan of a training, testing and prediction tuple

which is fed to our FDS. Starting from the training phase of our model.

Figure1. Project architecture

4.1.2 Classifier – Random Forest

The role of Job1 is to processing the incoming stream and maintaining the Random Forest.

Algorithm: Job1- Classifier

Input: rawData: is the tuples from source

Output: predicted_tuple: is the prediction from the Random Forest

1. structuredData ←FlatMap (rawData)

2. results ← structuredData.groupByKey(structuredData.idHT). flatMapGroupsWithSate [HT, Outstate]

3. if state does exist then

4. Get from state the Hoeffding Tree

5. for each tuple in the iterator do

6. if keyTuple belongs to testing or prediction then

7. Do Test and Predict Hoeffding Tree Algorithm

8. end

9. else if state does not exist then

10. end

11

Pseudo Code Analysis

Line 1: The FlatMap function splits the rawData tuple into the data, purposeId and keyTuple part. The data

 part is the part that starts from the first column until the next-to-last column. The purposeId is the

 next-to-last column and the keyTuple is the last column. So, StructuredData follows the structure

 of the InputData class.

 − case class InputData (data: String, purposeId: Int, keyTuple: Int, idHT: Int)

 The reason we use the FlatMap function instead of the Map function because we take advantage

 of the property of FlatMap which is that it can return more than one tuple given one input tuple.

 Our purpose, besides structuring the rawData, is to populate each tuple according to the number of

 Hoeffding Trees. (the reason for that presented in Section 3.1.2). So, the structuredData is a number

 of copies of a structured version of rawData.

Line 2: In this line there are several maters to discuss; firstly, in order to build a Random Forest, we have

 to populate a number of Hoeffding Trees. This is made possible by grouping our data based on the

 Hoeffding Tree id. Apache Spark Structured Streaming guarantees that if a pleiad of samples is

 grouped by a column, each group is processed individually by a distributed manner from the

 processing engine. Secondly, in order to have a machine learning model, like ours, we have to save

 the current state, that’s why we use flatMapGroupsWithState. In fact, as far as we know, this

 transformation is the only way to perform such a functionality. The state consists of the Hoeffding

 model and the outstate. The structure of outstate is the following:

 − case class OutputState (listKeyTuple: List [Int], listRes: List [Int], listLabel: List [Int],

 listOfPurposeId: List [Int], weightTree:Double, idHT: Int)

4.1.3 Aggregation - Weighted Voting

The role of Job2 is to calculate the confusion matrix, the performance metrics of Random Forest and finally

to aggregate the results-votes of trees so that calculates the label of predicting tuples. Below follows the

section of Algorithm of Job2 and the Pseudo Code Analysis.

Algorithm: Job2

Input: rawData: is the tuples from Job1

Output: predicted_tuple: is the prediction from the Random Forest

1. structuredData ←FlatMap (rawData)

2. groupedResult ← structuredData.groupBy(keytuple, purposeId). WeightedVotingAggregation

3. predictedTuples ← groupedResult.Filter (prediction_tuples)

4. testingTuples ← groupedResult.Filter (testing_tuples). ConfusionMetrixAccumulator

Pseudo Code Analysis

Input: The rawData, which are the incoming tuples from Job1, follow the same structure with the output

 structure of Job1.

Line 1: The Flatmap function splits the rawData tuple into the class Result given that we are working on

structured stream. Below follows the structure of the Result case class.

− case class Result (keyTuple: Int, res: Int, label: Int, purposeId: Int, idT: Int, weightTree: Double)

Line 2: In this line, is become the groupby operation base on keyTuple,purposeId . The purpose of groupby

operation is twofold. Firstly, for each predicting tuple aggregates the votes from multiple instances of it,

which corresponding to the vote of each tree of Random Forest and using the weight of each tree calculates

12

the weighted sum of predicting tuple, so in the end calculates the label. Secondly, for testing tuples just

keep the testing instances so that can then be calculated the confusion matrix for Random Forest.

Line 3: In this line, the groupby results are filtered so that only the predicted tuples are selected and emitted

the label of each predicted tuple.

Line 4: In this line, the groupby results are filtered so that only the testing tuples are selected and then are

calculated the performance metrics of Random Forest. The calculation is implemented using the abstract

class of Accumulator.

5. Experiments -Results
In order to evaluate the methods described herein, we have to conduct an extensive testing. Firstly, our goal

is to prove that the machine learning model is able to classify a given record to the respective class and

secondly, to prove that our system is scalable and distributed and can run in a cluster environment.

Therefore, our testing is split based on the testing datasets, to the first phase where we test the classification

ability of our system and to the second phase where we examine the performance of our system according

to distribution and scalability. The need of this split in the experimental process is due to the fact that there

are no public datasets bigger than 150.000 records where data are not unbalanced. As we mentioned in

Section 2.3 (Data Preprocessing – Data Source) we used a widely known dataset for Credit Card Fraud

detection which is a suitable dataset for testing with the drawback of non-uniformity between classes. We

also used GMSC4 dataset, which is used for determining whether or not a loan should be granted, containing

150.000 borrowers with 10 attributed each. Both datasets do not represent the volume we needed in order

to scientifically contend that our system is running with “Big Data”. On the other hand, there are smaller

datasets which are result of under sampling of the major class and they are more reliable for testing the

classification ability of our system. The dataset used for this purpose is called Swiss banknote counterfeit

detection5 and the goal is to identify genuine and counterfeit banknotes, even if half of the data is

counterfeit. Contains 200 entries with 100 in each class and 6 attributes.

5.1 First Phase – Swiss banknote counterfeit detection

The metrics presented below are results of testing after the following hyper parameter tuning (In section

3.1.1 (Building a Hoeffding Tree) the variables are extensively explained):

variable number of Trees m_features Max max_examples_seen delta tie_threshold

number 100 6 6 5 10-7 5%

Results:

Metric Accuracy Sensitivity Specificity Precision F1_score

Result 77% 87% 64% 72% 79%

4 Give Me Some Credit dataset https://www.kaggle.com/c/GiveMeSomeCredit
5 Swiss banknote counterfeit detection https://www.kaggle.com/chrizzles/swiss-banknote-conterfeit-detection

https://www.kaggle.com/c/GiveMeSomeCredit
https://www.kaggle.com/chrizzles/swiss-banknote-conterfeit-detection

13

5.2 Second Phase – GMSC

The metrics presented below are results of testing after the following hyper parameter tuning (In section

3.1.1 (Building a Hoeffding Tree) the variables are extensively explained):

variable number of Trees m_features Max max_examples_seen delta tie_threshold

number 100 10 10 1000 10-7 5%

Results:

Metric Accuracy Sensitivity Specificity Precision F1_score

Result 90% 49% 92% 65% 59%

5.3 Second Phase – Credit Card Fraud Detection

The metrics presented below are results of testing after the following hyper parameter tuning (In section

3.1.1 (Building a Hoeffding Tree) the variables are extensively explained):

variable number of Trees m_features Max max_examples_seen delta tie_threshold

number 100 28 28 1000 10-7 5%

Results:

Metric Accuracy Sensitivity Specificity Precision F1_score

Result 93% 51% 91% 58% 54%

6. Conclusion
The presented methodology demonstrates an approach of classifying data streams using Random Forest in

a distributed manner. Our system uses the state-of-the-art processing engine of Apache Spark and

establishes itself among similar systems. Future research will continue to improve the overall classification

accuracy and speed of our system.

References:
[1] Published by James Cherowbrier: https://www.statista.com/statistics/719708/card-payments-per-day-forecast-united-

kingdom/

[2] Robin Genuer, Jean-Michel Poggi, Christine Tuleau-Malot. Random Forests for Big Data: https://arxiv.org/pdf/1511.08327.pdf

[3] Pedro Domingos, Geoff Hulten: Mining high-speed data streams: https://dl.acm.org/doi/10.1145/347090.347107

[4] Leo Breiman: Random Forests: https://link.springer.com/article/10.1023/A:1010933404324

[5] Pierre Geurts, Damien Ernst & Louis Wehenkel: Extremely randomized trees: https://link.springer.com/article/10.1007/s10994-

006-6226-1

[6] Geoff Hulten, Pedro Domingos, Laurie Spencer: Mining time-changing data streams:

https://dl.acm.org/doi/10.1145/502512.502529

[7] Heitor M. Gomes, Albert Bifet, Jesse Read: Adaptive random forests for evolving data stream classification:

https://link.springer.com/article/10.1007/s10994-017-5642-8

https://www.statista.com/aboutus/our-research-commitment/1321/james-cherowbrier
https://www.statista.com/statistics/719708/card-payments-per-day-forecast-united-kingdom/
https://www.statista.com/statistics/719708/card-payments-per-day-forecast-united-kingdom/
https://arxiv.org/search/stat?searchtype=author&query=Genuer%2C+R
https://arxiv.org/search/stat?searchtype=author&query=Poggi%2C+J
https://arxiv.org/search/stat?searchtype=author&query=Tuleau-Malot%2C+C
https://arxiv.org/pdf/1511.08327.pdf
https://dl.acm.org/doi/10.1145/347090.347107
https://link.springer.com/article/10.1023/A:1010933404324
https://link.springer.com/article/10.1007/s10994-006-6226-1
https://link.springer.com/article/10.1007/s10994-006-6226-1
https://dl.acm.org/doi/10.1145/502512.502529
https://link.springer.com/article/10.1007/s10994-017-5642-8

14

[8] Structured Streaming Programming Guide: https://spark.apache.org/docs/latest/structured-streaming-programming-

guide.html#overview

[9] Kaggle: https://en.wikipedia.org/wiki/Kaggle

[10] Amiripalli Shanmuk Srinivas: Application of Big Data Analytics and Pattern Recognition Aggregated With Random Forest

for Detecting Fraudulent Credit Card Transactions (CCFD-BPRRF):

https://www.researchgate.net/publication/332369280_Application_of_Big_Data_Analytics_and_Pattern_Recognition_Aggregate

d_With_Random_Forest_for_Detecting_Fraudulent_Credit_Card_Transactions_CCFD-BPRRF

[11] Andrea Dal Pozzolo, Giacomo Boracchi, Olivier Caelen: Credit card fraud detection and concept-drift adaptation with delayed

supervised information https://ieeexplore.ieee.org/document/7280527

[12] Credit Card Fraud Detection, Anonymized credit card transactions labeled as fraudulent or genuine:

https://www.kaggle.com/mlg-ulb/creditcardfraud

[13] Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.

[14] Oza, N. C. (2005). Online bagging and boosting. IEEE International Conference on Systems, Man and Cybernetics, 3, 2340–

2345

[15] Bifet, A., Holmes, G., & Pfahringer, B. (2010). Leveraging bagging for evolving data streams. In PKDD (pp. 135–150).

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#overview
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#overview
https://en.wikipedia.org/wiki/Kaggle
https://www.researchgate.net/publication/332369280_Application_of_Big_Data_Analytics_and_Pattern_Recognition_Aggregated_With_Random_Forest_for_Detecting_Fraudulent_Credit_Card_Transactions_CCFD-BPRRF
https://www.researchgate.net/publication/332369280_Application_of_Big_Data_Analytics_and_Pattern_Recognition_Aggregated_With_Random_Forest_for_Detecting_Fraudulent_Credit_Card_Transactions_CCFD-BPRRF
https://ieeexplore.ieee.org/document/7280527
https://www.kaggle.com/mlg-ulb/creditcardfraud

